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ABSTRACT

Different causal mechanisms have been proposed to link commodity prices and exchange rates,
with opposing implications. We examine these causal relationships empirically, using data on three
commodities (crude oil, gold, copper) and four countries (Canada, Australia, Norway, Chile), over
the period 1986-2015. To go beyond pure significance tests of Granger non-causality and pro-
vide a relatively complete picture of the links, measures of the strength of causality for different
horizons and directions are estimated and compared. Since low-frequency data may easily fail to
capture important features of the relevant causal links, daily and some 5-minute data are exploited.
Both unconditional and conditional (given general stock market conditions and short-term interest
rates) causality measures are considered, and allowance for “dollar effects” is made by considering
non-U.S. dollar exchange rates. We identify clear causal patterns: (1)there is evidence of Granger-
causality between commodity prices and exchange rates in both directions across multiple horizons,
but the statistical evidence and measured intensity of the effects are much stronger in the direction
of commodity prices to exchange rates, especially at horizon one: the ratiosof causality measures
in two different directions can be quite high; (2) causality is stronger at short horizons, and be-
comes weaker as the horizon increases; (3) conditioning on equity prices(the S&P500) does not
change the patterns of causality measures found in the unconditional cases; (4) the main results
are robust to eliminating U.S.-dollar denomination effects and including a short-term interest rate
as the conditioning variable. In contrast with earlier results on the non-predictability of exchange
rates, we find that the macroeconomic/trade-based mechanism plays a central role in exchange-rate
dynamics, despite the financial feature of these markets.

Key words: multi-horizon causality; causality measures; commodity prices; exchange rates; spuri-
ous causality.

Journal of Economic Literature classification: F31, G15, G17.
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1. Introduction

The dynamic relationship between commodity prices and exchange rates has attracted much atten-
tion from both researchers and practitioners. Two main explanations havebeen proposed. The first
one suggests that changes in a commodity price lead to changes in the exchange rate of the corre-
sponding commodity currency. This idea commonly appears in both the research literature [see, for
example, Chen and Rogoff (2003) and Chen (2004)] and press commentaries.1 The second expla-
nation stresses the financial and speculative features of foreign exchange markets: exchange rates
can help predict economic fundamentals including commodity prices; see, forexample, Meese and
Rogoff (1983), Engel and West (2005), Cheung, Chinn and Pascual (2005), Rogoff and Stavrakeva
(2008), Chen, Rogoff and Rossi (2010), and Rossi (2013). Following the first mechanism, commod-
ity prices should help predict exchange-rate movements. According to the second one, the reverse
should happen. Thus, a central difference between these two alternative explanations lies in the
direction of causality in the sense of Wiener-Granger.2

The first theory relies on macroeconomic and trade-theory arguments. For a small open econ-
omy whose exports depend heavily on a particular commodity (for example, gold for Australia,
crude oil for Canada and Norway, copper for Chile), an increase in the price of that commodity
should produce an upward pressure on the demand for its currency, which leads to an appreciation.
For instance, while crude oil is the largest Canadian export, Canada’s total crude oil production is a
small share of world output. The price of oil is determined by global supply and demand conditions
to which Canada contributes only modestly, while a change in the price of oil has a large effect
on the value of Canadian exports. This mechanism can be justified in sticky-price open economy
models with non-traded goods, a portfolio-balance model, and the terms-of-trade hypothesis; see
Chen and Rogoff (2003) and Chen (2004). This type of explanation suggests that exchange-rate
movements can be predicted by economic variables. However, statistical evidence shows that it is
generally difficult to forecast exchange rates, so economic models of exchange-rate determination
do not fare well from the empirical viewpoint.3

Instead, according to the second theory, exchange rates are determined – like most asset prices –
by the net present value of fundamentals (including commodity prices), which implies that exchange
rates should lead and therefore Granger-cause commodity prices; see Obstfeld and Rogoff (1996),
Engel and West (2005), Chen et al. (2010) and Alquist, Kilian and Vigfusson (2012).4

1For example, David Parkinson writes in the Globe and Mail (Report on Business, 10 April 2010, B14): “When
analyzing the loonie, always look at oil”; “loonie” is a colloquialism for the Canadian dollar, a reference to the image
of a loon on the coin. In Bloomberg Businessweek (April 18, 2013), Sebastian Boyd states: “Chilean Peso declines as
principal export copper reaches new low”. In the Wall Street Journal (July 5, 2013), Vincent Cignarella writes: “ . . . a
rise in the price of the precious metal would do wonders to boost the fortunes of the Australian dollar”.

2This is the concept of causality that will be used throughout.
3For more general discussions of the theory and empirical evidence onexchange rate markets, see e.g. Levich (1985),

Baillie and McMahon (1989), Baillie and Bollerslev (1990), Baillie and Bollerslev (1994), Frankel and Rose (1995),
Froot and Rogoff (1995), Isard (1995), Obstfeld and Rogoff (1996), Mark (2001), Sarno and Taylor (2002) and Kilian
and Taylor (2003).

4For work on forecasting commodity prices (especially energy prices),see also Schwartz (1997), Schwartz and Smith
(2000), Pindyck (2001), Hamilton (2009), Alquist and Kilian (2010), Reeve and Vigfusson (2011), Bernard, Dufour,
Khalaf and Kichian (2012), Baumeister and Kilian (2012), Baumeister and Kilian (2013), Baumeister, Kilian and Zhou
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Here we examine empirically the causal relationship between commodity prices and nominal ex-
change rates, using data on three commodities (crude oil, gold, copper) and four countries (Canada,
Australia, Norway, Chile), over the period 1986-2015. We emphasize five issues which should be
taken into account.

First, predictability and dynamic responses may depend on the time horizon, so it is important
to assess these links across different horizons. In particular, lookingat multiple-horizon causality
does allow one to account for indirect causal links – which go through different variables across
time – and may help to eliminate spurious findings of causation; see Dufour and Renault (1998).

Second, given that causal links may theoretically exist in all directions, it is of interest to deter-
mine which links – in terms of direction and time horizon – matter most. This can be doneusing
measures of the strength of causal links. Significance tests (for non-causality) are inappropriate for
that purpose: a large effect (from an economic viewpoint) may not be statistically significant be-
cause the data do not allow one to measure it precisely, and an economically negligible effect may be
statistically significant because the effect, while small, can be very preciselyestimated. It is much
more informative to parameterize the relevant effects, compute point estimatesfor these parameters,
and eventually confidence sets; see Dufour and Taamouti (2010) and Dufour, Garcia and Taamouti
(2012). Non-causality tests can provide evidence on the presence forecast improvements from the
inclusion of different past variables, but do not indicate the magnitudes of such improvements.

Third, the proposed measures should be intuitive and easy to interpret without ahighly restrictive
parametric model. In particular, they should allow for a wide spectrum of dynamic structures. To
this end, we use here the methodology of Dufour and Taamouti (2010) andDufour et al. (2012).

Fourth, it is well known that Granger causality is not generally invariant to aggregation: high-
frequency data may reveal patterns which are aggregated away in low-frequency data, and causality
in low-frequency data can also be spurious; see Tiao and Wei (1976),Wei (1982, 1990), Marcellino
(1999), Breitung and Swanson (2002), and Silvestrini and Veredas (2008). Indeed, as stressed in
Dufour and Renault (1998), the interpretation of Granger causality depends on the forecast horizon
and data frequency. Data on commodity prices and exchange rates are originally generated at very
high frequency. Quarterly data typically used in macroeconomic studies areobtained by aggre-
gating high-frequency data over time. Spurious causality can be induced when intervals between
microeconomic decisions of economic agents are finer than those between sample observations.

Fifth, commodity prices and exchange rates are set in active financial markets.Movements in
such markets can be fast or short-lived, so low-frequency data may easily fail to capture causal links.

No earlier study of the behavior of exchange rates meets these objectives. The closest papers
include studies of the relationship between real exchange rates and realcommodity prices based
on low-frequency (e.g., quarterly) data; see Gruen and Wilkinson (1994), Amano and van Norden
(1995, 1998a), Amano and van Norden (1998b), Chen and Rogoff (2003), Cashina, Céspedes and
Sahay (2004), Issa, Lafrance and Murray (2008). Significance tests of the predictive relationship
between nominal exchange rates and commodity prices (including tests of conventional Granger
non-causality) are also reported by Chen (2004), Chen et al. (2010), Alquist et al. (2012), and
Ferraro, Rogoff and Rossi (2012). None of above studies considers the magnitude of prediction
improvements using measures of the strength of causality.

(2013) and the references therein.
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In this paper, we assess the strength of the underlying linkages between commodity prices and
exchange rates by estimating causality measures at several horizons in both directions. The mea-
sures used are based on the concepts and statistical methodology – includingboth point estimates
(of causality measures) and confidence intervals – described in Dufourand Taamouti (2010) for a
general time-series framework, and Dufour et al. (2012) in the contextof high-frequency data (as in
this paper). In particular, the statistical setup we consider allows for general assumptions, such as
stationary invertible vector autoregressive moving average (VARMA) models. Both unconditional
and conditional (given stock price and interest rate movements) measuresare considered.

We examine these causal relationships empirically, using data on three commodities (crude oil,
gold, copper) and four countries (Canada, Australia, Norway, Chile), over the period 1986-2015.
In conditional causality analyses, we include an indicator of the level of equity prices (the S&P500
index) or a short-term interest rate. To account for possible spuriouscomovements due to the fact
that exchange rates and commodity prices are all denominated in U.S. dollars (“dollar effects”), we
also consider some alternative currency benchmarks.

Section 2 introduces the framework we use, involving the statistical conceptsof multi-horizon
causality and measures. Section 3 gives a detailed description of data usedin this study and reports
and discusses the empirical results. Section 4 concludes.

2. Framework

The main objective of this paper is to examine high-frequency causality between commodity prices
and exchange rates using daily and intra-day data. In this section, we introduce the statistical con-
cepts of multi-horizon causality and causality measures that we use.

2.1. Causality at different horizons

Granger (1969) introduced the concept of causality in terms of predictability at horizon one of a
(vector) variableX from its own past, the past of another (vector) variableY , and possibly a vector
Z of auxiliary variables; this has come to be known as Granger causality. Thisconcept has become a
fundamental notion for studying dynamic relationships among time series. An important extension
was proposed by Dufour and Renault (1998) who generalized the notion of Granger causality by
considering linear causality at a given (arbitrary) horizonh and derived necessary and sufficient
conditions for non-causality between variables up to any given horizonh (1 ≤ h ≤ ∞), allowing
the possibility of indirect causality. This indirect causality in the presence ofauxiliary variables
can be used to distinguish short-run and long-run (non)causality: for example, althoughY does
not Granger-causeX at horizon one, it may nonetheless help to predictX several periods ahead
though transmission by a vectorZ of auxiliary variables. The importance of the distinction between
correlation and causality is also underscored when considering horizons longer than one period.

Dufour and Renault (1998) defined linear causality at any given horizon h ≥ 1 in terms of
orthogonality between subspaces of a Hilbert space of random variables with finite second moments.
We will adopt the notation used in Dufour and Taamouti (2010). We denote by L2 a Hilbert space
of real random variables with finite second moments. Define the “reference information set”I =

3



{I(t) : t ∈ Z, t > ω} and t < t ′ ⇒ I (t) ⊆ I (t ′) for all t > ω, whereI(t) is defined on Hilbert
subspace ofL2, ω ∈ Z∪{−∞} represents a “starting point”, andZ is the set of the integers. LetH
be a (possibly empty) Hilbert subspace ofL2, which contains information common to allI (t) [e.g.,
the constant in a regression model], and assumeH ⊆ I(t). Consider three multivariate stochastic
processes:X = {X(t) : t ∈ Z, t > ω}, Y = {Y (t) : t ∈ Z, t > ω} andZ = {Z(t) : t ∈ Z, t > ω},
whereX (t) =

(

x1(t) , . . . , xm1 (t)
)′

, Y (t) =
(

y1(t) , . . . , ym2 (t)
)′

, Z (t) =
(

z1(t) , . . . , zm3 (t)
)′

, with
numbers of componentsm1 ≥ 1, m2 ≥ 1, m3 ≥ 0, andxi (t), yi (t), zi (t) ∈ L2, for all i. Denote by
X(ω, t], Y (ω, t] andZ(ω, t] the Hilbert spaces spanned by the components of variablesX , Y andZ
respectively up to timet. Then information setsIX(t) andIXY (t) are defined asIX(t) = I(t)+X(ω, t]
andIXY (t) = I(t)+X(ω, t]+Y (ω, t], andZ(ω, t] is assumed to be included inI(t).

For any information setB(t) (some Hilbert subspace ofL2), given a positive integerh, we denote
by P [X(t +h) | B(t)] the best linear forecast ofX(t +h) based on the information setB(t),by

UL [X(t +h) | B(t)] = X(t +h)−P [X(t +h) | B(t)]

the corresponding linear forecast error, and by

Σ [X(t +h) | B(t)] = E
{

UL [X(t +h) | B(t)]U ′
L [X(t +h) | B(t)]

}

the variance-covariance matrix of the linear forecast error (or mean squared error, MSE). Thus we
have the following definition of non-causality at any given horizonh ≥ 1 [see Dufour and Renault
(1998) and Dufour and Taamouti (2010)].

Definition 2.1 NON-CAUSALITY AT HORIZON h. Y does not cause X at horizon h given I,
denoted Y 9

h
X | I, iff

P[X(t +h) | IX(t)] = P[X(t +h) | IXY (t)].

We can define non-causality fromX to Y at horizonh similarly. This definition concerns the
conditional non-causality with auxiliary variables, which may transmit indirectcausality between
variables at horizons higher than one, even if there is no direct causalityat horizon one. IfZ is
dropped from the information set (m3 = 0), then the above definition represents unconditional non-
causality. In the absence of auxiliary variables, unconditional non-causality at horizon one implies
non-causality at any horizonh (which can be unbounded); see Dufour and Renault (1998).

2.2. Measuring causality across horizons

Rejecting non-causality hypotheses in statistical tests implies that certain variables can help in fore-
casting others [Dufour, Pelletier and Renault (2006)]. Of course, statistical significance depends on
the data and test power, and the outcomes of such tests do not representthe magnitude of causality.
Geweke (1982, 1984) interpreted causality measures as the proportional reduction in the forecast
error variance of a variable available by taking into account the past of other variables. Dufour and
Taamouti (2010) make multi-horizon extensions of such measures in the context of a set of linear
invertible processes (including VAR, VMA, and VARMA). The latter authors note that “building

4



causality measures at different horizons, along with associated confidence intervals, can yield a
much more informative analysis of Granger causality than tests of non-causality.”

Following Dufour and Taamouti (2010), we measure causality at horizonh ≥ 1 as follows.

Definition 2.2 CAUSALITY MEASURE AT HORIZON h. For h ≥ 1,

CL
(

Y →
h

X | I
)

= ln

[

det{Σ [X(t +h) | IX(t)]}
det{Σ [X(t +h) | IXY (t)]}

]

(2.1)

is the mean-square causality measure from Y to X at horizon h, given I.

A causality measure fromX to Y at horizonh is defined in a similar way. Form1 = m2 = 1, the
above definition reduces to

CL
(

Y →
h

X | I
)

= ln

[

σ2 [X(t +h) | IX(t)]
σ2 [X(t +h) | IXY (t)]

]

.

This definition allows for conditional causality with auxiliary variables. IfZ is empty(m3 = 0),
Definition 2.2 defines an unconditional causality measure. This causality measure is nonnegative,
and zero if and only if there is no causality at the horizon considered; the higher the value of the
measure, the stronger is the causal relationship. When non-causality testsreject in both directions,
causality may nonetheless be much stronger in one direction, the feature revealed by causality mea-
sures. Furthermore, confidence intervals for causality measures can provide more powerful tests for
non-causality at any given horizon, and help determine how long the causal effects will last.

2.3. Causality measures in VARMA models

We now describe parametric representations of causality measures in the context of linear invertible
VARMA models of finite order, which will be used in the empirical analyses below. For simplicity,
we assumeX(t), andY (t) are univariate processes (m1 = m2 = 1). The discretem×1 vector pro-
cess with zero meanW (t) =

(

X(t)′,Y (t)′,Z(t)′
)′

defined onL2 is characterized by a stationary and
invertible VARMA(p,q) model,

W (t) =
p

∑
i=1

φ iW (t − i)+
q

∑
j=1

ϕ ju(t − j)+u(t) (2.2)

whereu(t) is m-dimensional white noise process with non-singular variance-covariance matrixΣu,
andm = m1 +m2 +m3. Hereafter, we callW (t) defined in (2.2) the unconstrained model.

To measure causality fromY to X at horizonh, we need to know the structure of the marginal
processW0(t) =

(

X(t)′,Z(t)′
)′

. According to Lütkepohl (1993), it follows a stationary VARMA( ¯p≤
mp, q̄ ≤ (m−1)p+q):

W0(t) =
p̄

∑
i=1

φ̄ iW0(t − i)+
q̄

∑
j=1

ϕ̄ je(t − j)+ e(t) (2.3)

5



wheree(t) is m0-dimensional white noise process with non-singular variance-covariance matrixΣe,
andm0 = m1 +m3. Hereafter, we callW0(t) defined in (2.3) the constrained model.

Under stationarity,W (t) has a VMA(∞) representation,

W (t) =
∞

∑
j=0

ψ ju(t − j) (2.4)

whereψ0 = Im, andψ j for j > 0 can be represented as functions of theφ i andϕ j coefficients. The
forecast error of linear forecast ofW (t + h) based onIW (t), and its variance-covariance matrix are
given by

UL [W (t +h) | IW (t)] =
h−1

∑
j=0

ψ ju(t +h− j) , (2.5)

Σ [W (t +h) | IW (t)] =
h−1

∑
j=0

ψ jE
[

u(t +h− j)u′ (t +h− j)
]

ψ ′
j =

h−1

∑
j=0

ψ jΣuψ ′
j, (2.6)

where IW (t) = I(t) + X(ω, t] +Y (ω, t], and the information setI(t) containsZ(ω, t]. Then the
unconstrained MSE for the linear forecast ofX(t +h) is

σ2 [X (t +h) | IW (t)] =
h−1

∑
j=0

J1ψ jΣuψ ′
jJ

′
1 (2.7)

whereJ1 is a m-dimensional vector taking the value of one only at the first place, and zero at the
other places. Similarly, the constrained model (2.3) can be written as a VMA(∞) model,

W0(t) =
∞

∑
j=0

ψ̄ je(t − j), (2.8)

whereψ̄0 = Im0, andψ̄ j for j > 0 are functions of thēφ i andϕ̄ j coefficients. The forecast error for
the linear forecast ofW0(t +h) based onIW0 and its variance-covariance matrix are then given by:

UL [W0(t +h) | IW0 (t)] =
h−1

∑
j=0

ψ̄ je(t +h− j) , (2.9)

Σ [W0(t +h) | IW0 (t)] =
h−1

∑
j=0

ψ̄ jE
[

e(t +h− j)e′ (t +h− j)
]

ψ̄ ′
j =

h−1

∑
j=0

ψ̄ jΣeψ̄ ′
j . (2.10)

whereIW0(t) = I(t) + X(ω, t] and the information setI(t) containsZ(ω, t]. Thus the constrained
MSE for the linear forecast ofX(t +h) is

σ2 [X (t +h) | IW0 (t)] =
h−1

∑
j=0

J0ψ̄ jΣeψ̄ ′
jJ

′
0 (2.11)
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whereJ0 is am0-dimensional vector taking the value of one only at the first place, and zero at the
other places. Consequently, the causality measure fromY to X conditional onI at horizonh can be
represented by

CL
(

Y →
h

X | I
)

= ln

[

σ2 [X (t +h) | IW0 (t)]
σ2 [X (t +h) | IW (t)]

]

= ln

[

∑h−1
j=0 J0ψ̄ jΣeψ̄ ′

jJ
′
0

∑h−1
j=0 J1ψ jΣuψ ′

jJ
′
1

]

. (2.12)

To estimate the causality measure consistently without using maximum likelihood or nonlinear
least squares, which involve complicated nonlinear optimization and are therefore difficult to use
in the context of bootstrap inference procedures, we use the linear estimation approach proposed in
Dufour and Taamouti (2010).

Under the assumption thatW (t) is invertible, it can be written as an infinite autoregressive
process:

W (t) =
∞

∑
i=1

π iW (t − i)+u(t) . (2.13)

Given a realization{W (1), . . . , W (T )}, we can approximate (2.13) by a finite-order VAR(k) model,
wherek depends on the sample sizeT :

W (t) =
k

∑
i=1

π ikW (t − i)+uk (t) . (2.14)

The least-squares estimators of the coefficientsπ(k) = [π1k,π2k, . . . , πkk] of the VAR(k) model
(2.14) and the variance-covariance matrixΣu|k of the error termuk(t), are denoted aŝπ(k) and
Σ̂u|k respectively. Then, we can useπ̂(k) to calculate the estimator ofψ j in (2.4), denoted aŝψ jk
for j = 1, . . . , h; see Dufour and Taamouti (2010).

Under general conditions,W0(t) has a VAR(∞) representation:

W0(t) =
∞

∑
i=1

π̄ iW0(t − i)+ e(t) , (2.15)

which can also be approximated by a finite-order VAR model, where for the convenience of com-
parison, we choose the same orderk as for the unconstrained model:

W0(t) =
k

∑
i=1

π̄ ikW0(t − i)+ ek (t) . (2.16)

The least-squares estimators of the coefficientsπ̄(k) = [π̄1k, π̄2k, . . . , π̄kk] of the VAR(k) model
(2.16) and the variance-covariance matrixΣe|k of the error termek(t) are denoted as̃π(k) andΣ̃e|k

respectively. Then, we can useπ̃(k) to calculate the estimator of̄ψ j in (2.8), denoted as̃ψ jk for
j = 1, . . . , h.

Finally, an estimator of the causality measure fromY to X conditional onI at horizonh is given
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by

ĈL
(

Y →
h

X | I
)

= ln

[

∑h−1
j=0 J0ψ̃ jkΣ̃e|kψ̃ ′

jkJ′0

∑h−1
j=0 J1ψ̂ jkΣ̂u|kψ̂ ′

jkJ′1

]

(2.17)

Dufour and Taamouti (2010) proved the consistency and asymptotic normality of this estimator
of the causality measure. That is,

T 1/2
[

ĈL
(

Y →
h

X | I
)

−CL
(

Y →
h

X | I
)

]

d
→ N

[

0, σ2
c (h)

]

whereσ2
c (h) = DCΩD′

C, DC = ∂CL
(

Y →
h

X | I
)

/∂θ ′, θ =
(

vec(π)′ , vech(Σu)
′)′, Ω is the asymp-

totic variance-covariance matrix ofθ̂ , vec denotes the column stacking operator, and vech is the
column stacking operator that stacks the elements on and below the diagonal only. In the empiri-
cal implementation below, we estimate the unconditional and conditional causality measures up to
horizon ten, based on (2.17), where the value ofk is chosen according to the Akaike information
criterion (AIC) as suggested by Lewis and Reinsel (1985).

As noted in Dufour and Taamouti (2010), analytical differentiation of the causality measures
with respect toθ is very difficult, so a bootstrap approach is a better choice. We thereforeuse the
eight-step residual-based bootstrap method proposed in Dufour and Taamouti (2010) to compute
the confidence interval of the causality measure at given horizonh. The asymptotic validity of the
residual-based bootstrap̂C∗

L

(

Y →
h

X | I
)

is proven in proposition 8.2 in Dufour and Taamouti (2010):

T 1/2[Ĉ∗
L

(

Y →
h

X | I
)

−ĈL
(

Y →
h

X | I
)] d

→ N
[

0, σ2
c (h)

]

whereσ2
c (h) is defined as above.

3. Empirical results

In this section, we first describe our data, and then report the results ofnon-causality tests at horizon
one as well as numerical measures of the magnitude of a causal effect atmultiple horizons. Because
our aim is to identify general patterns rather than to examine a single specific case, we present
results on multiple currencies and methods of treating the data. Most of our findings are presented
graphically in order to synthesize a large body of evidence in a relatively convenient format. We first
report the detailed results, and then summaries of key observations. We then examine the robustness
of the main results to alternative choices of exchange-rate numeraire and conditioning variables.

3.1. Data and methods

We consider four commodity-exporting, small open economies with floating exchange rates:
Canada (CA), Australia (AU), Norway (NO) and Chile (CL). We use dailydata on nominal ex-
change rates (E), commodity spot prices (Pcom) and the S&P 500 index price (Psp) and short-term
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Table 1: Data description

Canada
CAD/USD, CAD/GBP, CERI, WTI crude oil price, CTB3 02/01/1986 - 31/07/2015

Australia
AUD/USD, AUD/JPY, AUD(TWI), Gold price 02/01/1986 - 31/07/2015

Norway
NOK/USD, Brent crude oil price 20/05/1987 - 31/07/2015
NESR3 08/01/2003 - 31/07/2015

Chile
CLP/USD, Copper price 02/01/1996 - 31/07/2015

S&P500 index price 02/01/1986 - 31/07/2015

Note – Data sources. The daily CAD/USD, CAD/GBP and CERI are from Statistics Canada. The WTI crude oil price and
Brent crude oil price are from Energy Information Administration. Thedaily Canadian 3-month Treasury bill rate (CTB3)
is from the Bank of Canada. 5-minute data on CAD/USD, WTI crude oil price and S&P500 index price are from CQG
data factory [http://www.cqg.com]. The daily AUD/USD, AUD/JPY and WTI are from the Reserve Bank of Australia.
The daily gold price is the London pm fixing from the London Bullion Market Association (LBMA). Daily NOK/USD,
NOK/GBP and Norwegian 3-month effective synthetic rates (NESR3) arefrom the Norges Bank. Daily CLP/USD is
from the Central Bank of Chile. The daily copper price is the London MetalExchange (LME) price obtained from the
Chilean Copper Commission and Quandl. The daily S&P500 composite indexclosing price comes from Yahoo Finance.

interest rates (i) over the period 1986-2015.5 The nominal exchange rates includes six bilateral rates
expressed as a number of domestic currency units per foreign currency (CAD/USD, CAD/GBP,
AUD/USD, AUD/JPY, NOK/USD and CLP/USD), and two effective exchange rates: the Canadian-
dollar effective exchange-rate index (CERI), and the Australian-dollar trade-weighted index (TWI).
Four commodities (West Texas Intermediate (WTI) crude oil, Brent crude oil, gold and copper) are
all priced in U.S. dollars. We use the daily closing level of the S&P 500 index asan auxiliary vari-
able, because it is an indicator of the general level of asset prices, which may have predictive power
for both commodity prices and exchange rates. We also consider two short-term interest rates as
auxiliary variables: the Canadian 3-month treasury bill rate (CTB3), and the Norwegian 3-month
effective synthetic rate (NESR3). Further, we examine the case of the Canadian dollar at 5-minute
frequency over 2005-2009. Data descriptions, notation and sourcesare displayed in Table 1.

As already noted, we use the price of a single dominant exporting commodity for each country
instead of the price of a country-specific commodity index. We focus on four typical pairs of
commodity prices and exchange rates: the Australian dollar and the price of gold, Canadian dollar
and the WTI crude oil price, Norwegian krone and the Brent oil price, and Chilean peso and the

5Results on the daily data over the period 2000-2009 are available in an earliwer version of this paper [Zhang, Dufour
and Galbraith (2013)]. They are qualitively similar to those presented here.

9



price of copper.
We perform standard augmented Dickey-Fuller tests on the logarithms of the exchange rate,

commodity price and S&P500 price (denoted by lower case, e.g.e, pcom andpsp) and their first dif-
ferences (denoted using∆ , e.g.∆e, ∆ pcom and∆ psp). The results (not reported) suggest that these
variables in the logarithms level may be non-stationary, and that the corresponding first differences
are all stationary. We therefore model the first difference following a logarithmic transformation in
each case, as VAR(k) model,

W (t) = π0 +
k

∑
i=1

π iW (t − i)+u(t) (3.1)

whereW (t) = (∆e(t),∆ pcom(t))′ for unconditional causality; for conditional causality,W (t) =
(∆e(t),∆ pcom(t),∆ psp(t))′ or W (t) = (∆e(t),∆ pcom(t), i(t))′; and the value ofk is chosen ac-
cording to the Akaike information criterion (AIC). Given this model, we first test the null hy-
pothesis of non-causality between the exchange rate and commodity price for each country at
horizon one (one-day ahead), without or with an auxiliary variable. Forexample, for testing the
null hypothesis that WTI oil price does not cause CAD/USD unconditionallyat horizon one [de-
noted asH0: WTI oil 9 CAD/USD], a Wald-type test can be applied to test the restriction of
[π1]12 = [π2]12 = . . . = [πk]12 = 0 in model (3.1), whereW (t) = (∆eCAD/USD(t),∆ poil(t))′. The
p−values of non-causality tests will be reported in tables. To compare the strength of causality in
different directions across multiple horizons, we then apply the method introduced in Section 2 to
estimate unconditional and conditional causality measures up to horizon ten (ten-day ahead) and
build bootstrap confidence intervals. The results of causality measures willbe presented in figures
for the convenience of comparison.

In the following sub-sections we report and discuss the results for U.S. dollar-denominated
exchange rates, and then two robustness checks: non-U.S. dollar-denominated exchange rates, and
the use of interest rates rather than equity prices as conditioning variables.

3.2. U.S. dollar-denominated exchange rates

We first report and discuss the empirical results concerning Granger non-causality tests at hori-
zon one, and multi-horizon causality measures for U.S.- dollar-denominated exchange rates (i.e.,
exchange rates based on the U.S. dollar as numeraire, so that, for example, the CAD/USD is the
exchange-rate measure taken for Canada). The resultingp-values for unconditional and conditional
Granger non-causality tests at horizon one for these exchange rates appear in Tables 2 and 3. In
the figures we present a large set of results on measurement of the strength of causality in order to
uncover broad patterns present in the data, and we summarize these patterns in the text.

The results of the unconditional non-causality tests in Table 2 show that commodity to currency
non-causality is strongly rejected in all cases. This is true in cases with conditioning on the S&P500
index level (Table 3). Results on currency to commodity non-causality are mixed: p−values are
typically bigger than or in the neighborhood of the conventional 0.05 level, but are significant only
in the Chilean case at this standard level.

While the Granger-non-causality test results provide strong evidence ofeffects in the direction
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Table 2: Unconditional Granger non-causality tests at horizon one
(CAD/USD, AUD/USD, NOK/USD and CLP/USD)

Canada (03/01/1986 - 31/07/2015) Australia (03/01/1986 - 31/07/2015)
WTI oil 9 CAD/USD 0.000 gold9 AUD/USD 0.000
CAD/USD9 WTI oil 0.082 AUD/USD9 gold 0.053

Norway (21/05/1987 - 31/07/2015) Chile (03/01/1996 - 31/07/2015)
Brent oil9 NOK/USD 0.000 copper9 CLP/USD 0.000
NOK/USD9 Brent oil 0.127 CLP/USD9 copper 0.022

Note – Tests are based on model (3.1) whereW (t) = (∆e(t),∆ pcom(t))′. WTI oil 9 CAD/USD denotes the null hy-

pothesis of unconditional Granger non-causality at horizon one from WTI oil price to CAD/USD. The other notations are

analogous.P−values of tests are reported in the table.

of commodity price to exchange rate at horizon one, there is some evidence of effects in the other
direction as well. However, these tests are restricted to horizon one, and do not provide measures of
the strength of causality between variables. In cases where we reject thenon-causality hypothesis
in both directions, the tests may mask the potential difference in the strength of these effects; in
some cases, causality may be very weak even if non-causality is rejected. We therefore turn next
to measures of the magnitudes of these effects across multiple horizons, computing the causality
measures using the methods described in Section 2. The results are reported primarily through
graphics.

The unconditional U.S. dollar-denominated causality measures are reported in the left columns
of Figures 1 - 4, and the conditional causality measures are reported in theright columns of these
figures, in each case up to a ten-period horizon. A causality measure is statistically significant when
the confidence interval does not include the value zero; for example, from the top left panel of Figure
1, we can conclude that crude oil has significant predictive power forthe CAD/USD exchange rate
up to 3 days. In reading the figures, note that vertical scales may differ;to facilitate comparisons we
have therefore included a number of panels in which effects in the two directions are recorded on a
common scale.

We note a few broad patterns that are observable in the figures:(1) causality measures usually
have the highest value at horizon one and decrease with increasing prediction horizon, and tend to
converge toward zero with increasingly tight confidence intervals;(2) in cases where non-causality
is rejected in both directions, causality measures in the two directions can typically be distinguished
to some extent;(3) in cases where the non-causality hypothesis is not rejected, we find the cor-
responding measures are low but still statistically significant, which may indicatethat causality
measures provide a more powerful way to test Granger non-causality.

In the unconditional cases, we observe (see the bottom left panels of Figures 1 - 4) that causality
running from commodity to currency is stronger than in the opposite direction at horizon one in all
cases; thereafter the effects drop off rapidly and are not clearly distinguishable. In particular, the
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Table 3: Conditional Granger non-causality tests at horizon one - conditional on S&P500 price
(CAD/USD, AUD/USD, NOK/USD and CLP/USD)

Canada (03/01/1986 - 31/07/2015) Australia (03/01/1986 - 31/07/2015)
WTI oil 9 CAD/USD | S&P500 0.001 Gold9 AUD/USD | S&P500 0.000
CAD/USD9 WTI oil | S&P500 0.042 AUD/USD9 Gold | S&P500 0.055

Norway (21/05/1987 - 31/07/2015) Chile (03/01/1996 - 31/07/2015)
Brent oil9 NOK/USD | S&P500 0.000 Copper9 CLP/USD| S&P500 0.000
NOK/USD9 Brent oil | S&P500 0.065 CLP/USD9 Copper| S&P500 0.013

Note – Tests are based on model (3.1) whereW (t) = (∆e(t),∆ pcom(t),∆ psp(t))′. WTI oil 9 CAD/USD | S&P500

denotes the null hypothesis of Granger non-causality at horizon one from WTI oil price to CAD/USD conditional on

S&P500 price. The other notations are analogous.P−values of tests are reported in the table.

ratio of causality measures in the two directions at horizon one can be quite high, for example, as
high as 3 for Canada, 10 for Australia and Norway, and over 30 for Chile in favor of causation from
commodity price to exchange rate.

The lesson is essentially the same in conditional cases, conditioning here on the S&P index
value. The bottom right panels of Figures 1 - 4 provide summary results of conditional cases: the
strongest effects are measured at horizon one, where the commodity-to-currency direction domi-
nates in all cases.

Globally, these results suggest stronger causation from commodity price to exchange rate rather
than vice versa. We will now examine whether the elimination of dollar effects orconditioning on
interest rates has an effect on the overall pattern.

3.3. Robustness checks

We first check robustness to the use of non-U.S. dollar-denominated exchange rates (alternative
currency benchmarks and the effective exchange rates) for Canada and Australia, using GBP-
denominated Canadian dollar (GBP/CAD), the Canadian effective exchange-rate index (CERI),
JPY-denominated Australian dollar (AUS/JPY), and the Australian trade weighted exchange-rate
index (TWI). Adequate data with which to check robustness to the use of short-term interest rates
rather than the level of equity prices as conditioning variables, are available only for Canada and
Norway: the Canadian 3-month treasury bill rate (CTB3) and the Norwegian 3-month effective
synthetic rate (NESR3). We also examine the use of 5-minute data, available for oil prices, the
CAD/USD exchange rate and S&P500 index price for a shorter sample.

Tables 4 and 5 give unconditional and conditional statistical inference for the alternative cur-
rency benchmarks. The results are qualitatively similar to those for the U.S. dollar-denominated
currencies, with one noteworthy exception: evidence of commodity to currency causality does not
appear in the case of the Canadian dollar exchange rate with respect to Sterling. This result can
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Table 4: Unconditional Granger non-causality tests at horizon one
(CAD/GBP, CERI, AUD/JPY and AUD(TWI))

Canada (03/01/1986 - 31/07/2015)
WTI oil 9 CAD/GBP 0.295 WTI oil 9 CERI 0.000
CAD/GBP9 WTI oil 0.847 CERI9 WTI oil 0.107

Australia (03/01/1986 - 31/07/2015)
Gold9 AUD/JPY 0.000 Gold9 AUD(TWI) 0.000
AUD/JPY9 Gold 0.363 AUD(TWI) 9 Gold 0.304

Note – Tests are based on model (3.1) whereW (t) = (∆e(t),∆ pcom(t))′. WTI oil 9 CAD/GBP denotes the null hy-
pothesis of unconditional Granger non-causality at horizon one from WTI oil price to CAD/GBP. The other notations are
analogous.P−values of tests are reported in the table.

Table 5: Conditional Granger non-causality tests at horizon one - conditional on S&P500 price
(CAD/GBP, CERI, AUD/JPY and AUD(TWI))

Canada (03/01/1986 - 31/07/2015)
WTI oil 9 CAD/GBP | S&P500 0.612 WTI oil 9 CERI | S&P500 0.002
CAD/GBP9 WTI oil | S&P500 0.928 CERI9 WTI oil | S&P500 0.092

Australia (03/01/1986 - 31/07/2015)
Gold9 AUD/JPY | S&P500 0.000 Gold9 AUD(TWI) | S&P500 0.000
AUD/JPY9 Gold | S&P500 0.706 AUD(TWI) 9 Gold | S&P500 0.188

Note – Tests are based on model (3.1) whereW (t) = (∆e(t),∆ pcom(t),∆ psp(t))′. WTI oil 9 CAD/GBP | S&P500
denotes the null hypothesis of Granger non-causality at horizon 1 fromWTI oil price to CAD/GBP conditional on
S&P500 price. The other notations are analogous.P−values of tests are reported in the table.

13



Table 6: Conditional Granger non-causality tests at horizon one - conditional on interest rate
(CAD/USD and NOK/USD)

Canada (03/01/1986 - 31/07/2015)
WTI oil 9 CAD/USD | CTB3 0.001
CAD/USD9 WTI oil | CTB3 0.102

Norway (08/01/2003 - 31/07/2015)
Brent oil9 NOK/USD | NESR3 0.000
NOK/USD9 Brent oil | NESR3 0.101

Note – Tests are based on model (3.1) whereW (t) = (∆e(t),∆ pcom(t), i(t))′. WTI oil 9 CAD/USD | CTB3 denotes
the null hypothesis of Granger non-causality at horizon one from WTI oil price to CAD/USD conditional on CTB3. The
other notations are analogous.P−values of tests are reported in the table.

be seen as a form of falsification test: Sterling was itself a heavily commodity influenced currency
through a large part of this sample period, when North Sea oil sales were at their peak; oil prices
may therefore have be expected to affect the two currencies in a similar way, so their relative value
is not greatly affected.

For the other non-U.S. dollar-denominated exchange rates, as well as theeffective exchange
rates, we find evidence of causality running from commodity prices to exchange rates, but not for
the opposite direction, in both unconditional and conditional analyses.

To assess the strength of causality under the alternative exchange-ratebenchmark, compare
Figure 1 with Figures 7 and 8 (Canada) and Figure 2 with Figures 9 and 10 (Australia). Comparing
Figure 1 with Figure 8, we see nearly identical results, since the weight of the U.S. dollar in the
Canadian dollar effective rate is over 80%. This is not the case when comparing Figure 1 with
Figure 7, in which we treat the CAD exchange rate relative to GBP. Then, as indicated above, the
effect of oil price changes is expected to be similar for both the Canadian and British currencies,
leading to reduced observable effect of the oil price on this particular exchange rate. But the reverse
effect drops even more: the causality measure from the gold price to CAD/GBP is stronger than that
in the opposite direction, across multiple horizons.

For the Australian data, comparing Figure 2 with Figures 9 and 10, we observe similar pat-
terns: causality from commodity price to exchange rate is stronger than the opposite direction up to
horizon ten, though the magnitudes of the effects are lower in the latter cases.

Table 6 provides statistical evidence for Canada and Norway, where weuse a short-term (three-
month) interest rate as conditioning variable rather than the level of equity prices (the S&P500
index price). As in previous cases, we can only reject the null hypothesis of non-causality from
commodity to currency, but not in the other direction.

The effect on causality measures of this change of conditioning variable (i.e., replacing the
equity price variable with short-term interest rates) can be observed in Figures 5 and 6 for Canada
and Norway respectively. On comparing two columns of Figure 5, we see that the results are

14



qualitatively the same, but including the short-term interest rate increases the magnitude of causality
from the exchange rate to the commodity price. From the comparison of the right column with the
left one of Figure 6, we see that the patterns are qualitatively similar with slightlylarger magnitudes.
The results also suggest that the interest rate helps to identify a causation from exchange rates to
commodity price across multiple horizons, although it is weak. Overall, these findings are consistent
with our previous conclusion: causality from commodity price to exchange rate is stronger than in
the opposite direction, especially at short horizons.

A final robustness check involves the use of 5-minute data on oil prices and exchange rates,
available for Canada only. This sample extends from 03/01/2005 to 31/12/2009. The causality
measures are presented in Figure 11, which is similar to Figure 1 but at the 5-minute frequency.
The 5-minute results qualitatively agree with the daily ones. There is weak evidence of Granger-
causality in both directions, but it is stronger in the direction of commodity price toexchange rate,
at horizon one. The measures drop quickly after horizon one, and the differences between measures
in the two directions are small.

Globally, the above sensitivity analysis corroborates the conclusions obtained in the previous
subsection: Granger-causality from commodity prices to exchange rates ismuch stronger than for
the opposite direction, especially at horizon one; it is weaker in both directions at other horizons.
Statistical inference is compatible with this conclusion, providing very strong evidence of Granger-
causality from commodity prices to exchange rates, but mixed evidence of any causal effect in the
opposite direction.

4. Conclusion

Both popular commentary and economic reasoning based on demand for the currencies of small
open economies suggest that causality should run from commodity prices to exchange rates, but the
present value model of forward-looking exchange rates implies that exchange rates should Granger-
cause commodity prices. The debate on the direction of causality between commodity prices and
exchange rates is still open. Here we have examined higher-frequencycausal relationships between
exchange rates of four typical commodity economies (Canada, Norway, Australia, and Chile) and
the prices of their corresponding dominant exporting commodities (crude oil, gold, and copper).
We use daily and 5-minute data to reduce time-aggregation effects. In addition, we have applied
the concept of multi-horizon causality measures to compare the strength of causal relationships, to
provide more powerful non-causality tests, and to determine how long the causal effects will last.

In contrast with previous studies, our results suggest that unconditional and conditional causality
running from commodity prices to exchange rates is stronger than that in the opposite direction
across multiple horizons. In more detail, we find that (1) there is evidence ofGranger causality
between commodity prices and exchange rates in both directions across multiplehorizons, but the
evidence and measured strength are much stronger in the direction of commodity price to exchange
rate (the macroeconomic/trade mechanism), especially at short horizons; (2) causality is stronger
at short horizons, and becomes weaker as the horizon increases; (3) conditioning on S&P500 price
does not change the patterns of causality measures found in unconditional cases. (4) eliminating
dollar effects tends to weaken further the evidence of causality from exchange rates to commodity
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prices, and reveals a more definite pattern where causality from commodity prices to exchange rates
is stronger than causality in the reverse direction across multiple horizons; and (5) the main results
are robust to including interest rates as conditional variables.

These results suggest that the macroeconomic/trade-based mechanism mentioned in the intro-
duction plays a central role in exchange-rate dynamics, despite the financial features of these mar-
kets. To “see” these effects in the data, it is however important to considera sufficiently high data
frequency and to use an appropriate causal methodology. The results also underscore the facts that
the interpretation of causality depends on time units and observation intervals (data frequency),
and that causality measures present a more informative analysis of Granger causality than tests of
non-causality alone.

High-frequency data are potentially very fruitful in causality studies, allowing us to distinguish
with high resolution between immediate and lagged effects corresponding with different agents’
interests. However, there remain further avenues to investigate. For example, in our causality mea-
sures with 5-minute data, we estimate the VAR model at this frequency and the causality measures
lasting up to 11 periods, that is, only about one hour. If we were to allow longer periods for the
effects to develop we would need a large number of lags in the VAR model, sacrificing estimation
efficiency. One possible method of handling this difficulty is to use mixed-data sampling (MIDAS)
and mixed-frequency VAR (MF- VAR) approaches [Ghysels, Santa-Clara and Valkanov (2004),
Ghysels, Sinko and Valkanov (2007), Ghysels, Hill and Motegi (2013)and Kuzin, Marcellino and
Schumacher (2010)]. Furthermore, it is interesting to consider out-of-sample tests for Granger
causality [Inoue and Kilian (2004) and Chen (2005)]. Another worthwhile extension would be to
examine causality between volatility of commodity prices and exchange rates using the concept of
second-order causality [Granger, Robins and Engle (1986), Comte and Lieberman (2000), Hafner
(2009), and Dufour and Zhang (2015)].
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Figure 1. Causality measures between CAD/USD and WTI oil price
(unconditional and conditional on S&P500 price)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eCAD/USD(t),∆ poil(t))′ andk = 5.
∗ Conditional:W (t) = (∆eCAD/USD(t),∆ poil(t),∆ psp(t))′ andk = 5.

• Data: Daily CAD/USD, WTI oil price and S&P500 price are from 03/01/1986 to 31/07/2015.
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Figure 2. Causality measures between AUD/USD and gold price
(unconditional and conditional on S&P500 price)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eAUD/USD(t),∆ pgold(t))′ andk = 8.
∗ Conditional:W (t) = (∆eAUD/USD(t),∆ pgold(t),∆ psp(t))′ andk = 8.

• Data: Daily AUD/USD, gold price and S&P500 price are from 03/01/1986 to 31/07/2015.
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Figure 3. Causality measures between NOK/USD and Brent oil price
(unconditional and conditional on S&P500 price)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t)

∗ Unconditional:W (t) = (∆eNOK/USD(t),∆ poil(t))′ andk = 3.
∗ Conditional:W (t) = (∆eNOK/USD(t),∆ poil(t),∆ psp(t))′ andk = 3.

• Data: Daily NOK/USD, Brent oil price and S&P500 price are from 20/05/1987to 31/07/2015.
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Figure 4. Causality measures between CLP/USD and copper price
(unconditional and conditional on S&P500 price)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t)

∗ Unconditional:W (t) = (∆eCLP/USD(t),∆ pcopper(t))′ andk = 6.
∗ Conditional:W (t) = (∆eCLP/USD(t),∆ pcopper(t),∆ psp(t))′ andk = 6.

• Data: Daily CLP/USD, copper price and S&P500 price are from 03/01/1996to 31/07/2015.
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Figure 5. Causality measures between CAD/USD and WTI oil price
(unconditional and conditional on CTB3)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eCAD/USD(t),∆ poil(t))′ andk = 9.
∗ Conditional:W (t) = (∆eCAD/USD(t),∆ poil(t), iCTB3(t))′ andk = 9.

• Data: Daily CAD/USD, WTI oil price and Canadian 3-month Treasury bill rate(CTB3) are from
03/01/1986 to 31/07/2015.
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Figure 6. Causality measures between NOK/USD and Brent oil price
(unconditional and conditional on NESR3)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t)

∗ Unconditional:W (t) = (∆eNOK/USD(t),∆ poil(t))′ andk = 8.
∗ Conditional:W (t) = (∆eNOK/USD(t),∆ poil(t), iNESR3(t))′ andk = 8.

• Data: Daily NOK/USD, Brent oil price and Norwegian 3-month effective synthetic rate (NESR3)
are from 08/01/2003 to 31/07/2015.
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Figure 7. Causality measures between CAD/GBP and WTI oil price
(unconditional and conditional on S&P500 price)
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• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eCAD/GBP(t),∆ poil(t))′ andk = 5.
∗ Conditional:W (t) = (∆eCAD/GBP(t),∆ poil(t),∆ psp(t))′ andk = 5.

• Data: Daily CAD/GBP, WTI oil price and S&P500 price are from 03/01/1986 to31/07/2015.
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Figure 8. Causality measures between CERI and WTI oil price
(unconditional and conditional on S&P500 price)
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Unconditional causality measures from WTI oil price to CERI
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CERI −> Oil | S&P500

• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eCERI(t),∆ poil(t))′ andk = 5.
∗ Conditional:W (t) = (∆eCERI(t),∆ poil(t),∆ psp(t))′ andk = 5.

• Data: Daily CERI, WTI oil price and S&P500 price are from 03/01/1986 to 31/07/2015.
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Figure 9. Causality measures between AUD/JPY and gold price
(unconditional and conditional on S&P500 price)
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Unconditional causality measures from gold price to AUD/JPY
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Causality measures from gold price to AUD/JPY conditional on S&P500 price
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AUD/JPY −> Gold | S&P500

• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eAUD/JPY (t),∆ pgold(t))′ andk = 8.
∗ Conditional:W (t) = (∆eAUD/JPY (t),∆ pgold(t),∆ psp(t))′ andk = 8.

• Data: Daily AUD/JPY, gold price and S&P500 price are from 03/01/1986 to 31/07/2015.
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Figure 10. Causality measures between AUD(TWI) and gold price
(unconditional and conditional on S&P500 price)
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Unconditional causality measures from gold price to AUD(TWI)

 

 
95% percentile bootstrap interval
OLS point estimate

0 1 2 3 4 5 6 7 8 9 10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
a

u
s
a

li
ty

 M
e

a
s
u

re

Unconditional causality measures from AUD(TWI) to gold price

 

 
95% percentile bootstrap interval
OLS point estimate

0 1 2 3 4 5 6 7 8 9 10
0.000

0.003

0.006

0.009

0.012

0.015

0.018

C
a

u
s
a

li
ty

 M
e

a
s
u

re

Comparison of unconditional causality between gold price and AUD(TWI)

 

 
Gold −> TWI
TWI −> Gold

0 1 2 3 4 5 6 7 8 9 10
0.000

0.005

0.010

0.015

0.020

0.025

C
a

u
s
a

li
ty

 M
e

a
s
u

re

Causality measures from gold price to AUD(TWI) conditional on S&P500 price
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TWI −> Gold | S&P500

• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eTWI(t),∆ pgold(t))′ andk = 8.
∗ Conditional:W (t) = (∆eTWI(t),∆ pgold(t),∆ psp(t))′ andk = 8.

• Data: Daily AUD (TWI), gold price and S&P500 price are from 03/01/1986 to31/07/2015.
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Figure 11. Causality measures between CAD/USD and WTI oil price at 5-minute
(unconditional and conditional on S&P500 price)
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Unconditional causality measures from WTI oil price to CAD/USD (5−minute)
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Comparison of causality between WTI oil price and CAD/USD conditional on S&P500 price
(5−minute)
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CAD/USD −> Oil | S&P500

• Model: W (t) = π0 +
k
∑

i=1
π iW (t − i)+u(t).

∗ Unconditional:W (t) = (∆eCAD/USD(t),∆ poil(t))′ andk = 11.
∗ Conditional:W (t) = (∆eCAD/USD(t),∆ poil(t),∆ psp(t))′ andk = 11.

• Data: 5-minute CAD/USD, WTI oil price and S&P500 price are from 03/01/2005 to 31/12/2009.
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