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A regularized goodness-of-fit test for copulas
Titre: Un test d’adéquation de copule régularisé
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Abstract: The authors propose an Anderson–Darling-type statistic for copula goodness-of-fit testing. They determine
the asymptotic distribution of the statistic under the null hypothesis. As this distribution depends on the unknown value
of the copula parameter, they call on a multiplier method to compute the p-value of the test. They assess the power of
the test through simulations and find that it is generally superior to that of the Cramér–von Mises statistic based on the
distance between the empirical copula and a consistent parametric copula estimate under H0.

Résumé : Les auteurs proposent une statistique de type Anderson–Darling pour tester l’ajustement d’une copule. Ils
déterminent la loi limite de la statistique sous l’hypothèse nulle. Puisque cette loi dépend de la valeur inconnue du
paramètre de la copule, ils font appel à une approche par multiplicateurs pour le calcul du seuil du test. Ils évaluent la
puissance du test par voie de simulation et trouvent qu’elle surpasse généralement celle du test de Cramér–von Mises
fondé sur la distance entre la copule empirique et une estimation paramétrique de la copule convergente sous H0.
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1. Introduction

Let X1, . . . ,Xd be d ≥ 2 continuous random variables with cumulative distribution functions
F1, . . . ,Fd , respectively. As is well known (see, e.g., [9, 23]), the dependence among the compo-
nents of X = (X1, . . . ,Xd) is then characterized by a copula C, i.e., the joint cumulative distribution
function of the transformed vector U = (U1, . . . ,Ud) = (F1(X1), . . . ,Fd(Xd)).

Given n≥ 2 mutually independent copies X1 = (X11, . . . ,X1d), . . . ,Xn = (Xn1, . . . ,Xnd) of X, it
is of interest to test the hypothesis H0 : C ∈ C0 that the unique underlying copula C belongs to a
class C0 = {Cθ : θ ∈O} parameterized by θ ranging in some open set O . Goodness-of-fit testing
procedures for copulas were reviewed in [1, 13]; more recent contributions include [18, 19].

Conceptually at least, the simplest goodness-of-fit test for copulas [12] consists in comparing
the distance between a nonparametric estimate Ĉn of C and a parametric estimate Cθn derived
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A regularized goodness-of-fit test 65

from an estimator θn of θ which is consistent when H0 holds. This approach relies on the ranks
of the observations, except in the rare instances where X1, . . . ,Xd have known distributions.

Let Fn1, . . . ,Fnd be the empirical distribution functions of F1, . . . ,Fd , respectively. For each
i ∈ {1, . . . ,n}, a natural substitute for the unobservable Ui = (F1(Xi1), . . . ,Fd(Xid)) is given by

Ûi = (Ûi1, . . . ,Ûid) =

(
n

n+1
Fn1(Xi1), . . . ,

n
n+1

Fnd(Xid)

)
,

so that for arbitrary j ∈ {1, . . . ,d}, (n+ 1)Ûi j is the rank of Xi j among X1 j, . . . ,Xn j. A natural
estimator Ĉn of C, called the empirical copula [9], is then defined, for all u1, . . . ,ud ∈ [0,1], by

Ĉn(u1, . . . ,ud) =
1
n

n

∑
i=1

1(Ûi1 ≤ u1, . . . ,Ûid ≤ ud).

It is known to estimate C consistently and to have a weak limit under minimal regularity conditions
[6, 7, 26, 27, 28]. The scaling factor n/(n+1) used in defining Ûi avoids numerical issues that
sometimes occur, e.g., when a parametric copula density is evaluated at pseudo-observations lying
on the frontier of [0,1]d . This rescaling has no effect on the limiting behaviour of Cn.

When H0 holds, various estimates of the copula parameter θ can be derived from the pseudo-
sample Û1, . . . , Ûn. When Cθ admits a density cθ , a standard solution called maximum pseudo-
likelihood consists in finding the value θn of θ that maximizes

`(θ) =
n

∑
i=1

ln{cθ (Ûi1, . . . ,Ûid)}.

As shown in [10], this estimator is asymptotically Gaussian and unbiased under weak regularity
conditions. It is also known to be nearly efficient and robust to misspecification of the margins
[15, 16]. When θ is real-valued, moment-based techniques such as inversion of Kendall’s tau,
Spearman’s rho or Blomqvist’s beta are also possible; see, e.g., [8, 16].

From extensive numerical studies [1, 13, 19], it appears that overall, the “blanket” statistic

Sn = n
∫
[0,1]d
{Ĉn(u1, . . . ,ud)−Cθn(u1, . . . ,ud)}2dĈn(u1, . . . ,ud)

=
n

∑
i=1
{Ĉn(Ûi1, . . . ,Ûid)−Cθn(Ûi1, . . . ,Ûid)}2

based on the L2 norm between Ĉn and Cθn provides an excellent combination of power and sim-
plicity, as compared to alternative statistics based, e.g., on the L∞ norm or Rosenblatt transforms.
This procedure, proposed in [12], assigns equal weight to departures between Ĉn and Cθn at all
pseudo-observations Û1, . . . , Ûn. In many applications, however, it is important to ensure that the
copula dependence structure fits well in the tails, i.e., when Cθn is either close to 0 or 1. This is
the case, e.g., in economics, finance, and risk management, where the joint occurrence of low or
high extremes can have disastrous consequences; see, e.g., [21].

This consideration leads naturally to Anderson–Darling-type statistics such as

Rn = n
∫
[0,1]d

[
Ĉn(u1, . . . ,ud)−Cθn(u1, . . . ,ud)

[Cθn(u1, . . . ,ud){1−Cθn(u1, . . . ,ud)}+ζm]m

]2

dĈn(u1, . . . ,ud),
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66 Chr. Genest et al.

involving a consistent, rank-based estimator θn of θ , and tuning parameters m≥ 0 and ζm ≥ 0.
Given that Ĉn is a discrete measure, Rn is just as simple to compute as Sn; in fact, Rn coincides with
Sn when m = 0. However, setting m > 0 makes it possible to emphasize discrepancies between
Ĉn and Cθn in the tails, i.e., at points Û1, . . . , Ûn where Cθn(1−Cθn) is close to zero. At the same
time, setting ζm > 0 avoids the denominator getting too close to zero, which might spawn both
theoretical and practical difficulties; see [5] for an illustration in a different context.

The purpose of this paper is to investigate the small- and large-sample properties of a goodness-
of-fit test for copulas based on the statistic Rn. Its asymptotic null distribution is given in Section 2,
where the test that rejects H0 for large values of Rn is also shown to be consistent.

As is typical of goodness-of-fit test statistics for copulas, the asymptotic null distribution of Rn

depends on the unknown value of the underlying copula parameter θ . Therefore, one must resort
to a resampling algorithm to compute p-values. While a parametric bootstrap could be used to
this end [12], a more recent technique based on the Multiplier Central Limit Theorem [3, 19, 25]
turns out to be much more efficient. This technique is described in Section 3 in the special case
where the copula parameter θ is estimated by inversion of Kendall’s tau.

The results of a modest simulation study reported in Section 4 show that when m = .5 and
ζm = .05, the power of the test based on Rn is comparable to, and often considerably higher than,
the power of the test based on Sn, which corresponds to the case m = 0. The problem of how best
to choose the tuning parameters m and ζm in order to maximize the power of Rn is not addressed
here; this issue and others are listed in the Conclusion as possible avenues for future research.

2. Asymptotic null distribution of the test statistic

The large-sample distribution of the statistic Rn depends on the joint behaviour, as n→ ∞, of the
sequence

√
n(θ̂n−θ) and the empirical copula process

√
n(Ĉn−C). The weak convergence of

the latter has been thoroughly investigated; see, e.g., [6, 7, 26, 28]. Let BC be a centred Gaussian
field on [0,1]d with covariance structure given, for all u1, . . . ,ud ,v1, . . . ,vd ∈ [0,1], by

cov{BC(u1, . . . ,ud),BC(v1, . . . ,vd)}=C(u1∧ v1, . . . ,ud ∧ vd)−C(u1, . . . ,ud)C(v1, . . . ,vd),

where in general, a∧ b = min(a,b). Further let `∞[0,1]d be the set of bounded functions from
[0,1]d to R, endowed with the uniform norm ‖ · ‖. The following result is taken from [27].

Lemma 1. Suppose that for all j ∈ {1, . . . ,d}, Ċ j(u1, . . . ,ud) = ∂C(u1, . . . ,ud)/∂u j is continuous
on L j = {(u1, . . . ,ud) ∈ [0,1]d : u j ∈ (0,1)}. Then as n→ ∞,

√
n(Ĉn−C) converges weakly on

`∞[0,1]d to a tucked Brownian bridge C defined, for all u1, . . . ,ud ∈ [0,1], by

C(u1, . . . ,ud) = BC(u1, . . . ,ud)−
d

∑
j=1

Ċ j(u1, . . . ,ud)BC(1, . . . ,1,u j,1, . . . ,1).

Next, assume that C belongs to an identifiable family C0 = {Cθ : θ ∈ O} of copulas, where
O ⊂ Rp is open. Further assume that the following conditions hold for all θ ∈ O:

A1: For all j ∈ {1, . . . ,d}, ∂Cθ (u1, . . . ,ud)/∂u j is continuous on L j.
A2: As n → ∞,

√
n(Ĉn −Cθn ,θn − θ) converges weakly to a Gaussian limit (Cθ ,Θ) in

`∞[0,1]d⊗Rp.
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A3: The gradient vector ∇C = ∂C/∂θ exists and, as ε ↓ 0,

sup
‖θ ∗−θ‖<ε

‖∇Cθ ∗−∇Cθ‖→ 0.

These conditions are satisfied for a large number of copula families and for various rank-based
techniques commonly used for estimation purposes in this context [9]. The following lemma is a
trivial extension of a result stated in [2, 19] for the case θ ∈ R.

Lemma 2. If conditions A1−A3 hold, then, as n→ ∞,
√

n(Ĉn−Cθn) converges weakly on
`∞[0,1]d to the tight centred Gaussian process defined, for all u1, . . . ,ud ∈ [0,1], by

Cθ (u1, . . . ,ud)−Θ
>

∇Cθ (u1, . . . ,ud).

As proved in the Appendix, the limiting null distribution of the statistic Rn is the following.

Proposition 1. Under H0 and conditions A1−A3, and as n→ ∞, Rn converges weakly to

R =
∫
[0,1]d

[
Cθ (u1, . . . ,ud)−Θ>∇Cθ (u1, . . . ,ud)

[Cθ (u1, . . . ,ud){1−Cθ (u1, . . . ,ud)}+ζm]m

]2

dCθ (u1, . . . ,ud).

Now assume that H0 does not hold and that condition A2 is replaced by

A ′
2 : There exists θ ∗ ∈O such that, as n→ ∞,

√
n(Ĉn−C,θn−θ ∗) converges to a Gaussian

limit (Cθ ,Θ) in `∞[0,1]d⊗Rp.

The following result then implies that the test of H0 based on Rn is consistent.

Proposition 2. Suppose that conditions A1, A ′
2 and A3 are satisfied while H0 does not hold.

Then, for arbitrary ε > 0, Pr(Rn > ε)→ 1 as n→ ∞.

3. Validity of the multiplier method

It is clear from Proposition 1 that the limiting null distribution of the statistic Rn depends on the
unknown value of the copula parameter θ . To determine whether the observed value rn of Rn

is sufficiently large to reject H0, one must thus approximate the p-value Pr(Rn > rn|H0) via a
numerically intensive method, e.g., a parametric bootstrap [12] or a multiplier method [3, 19, 25].
The latter technique is preferred here as it proves to be computationally more efficient.

As simulations presented in Section 4 involve only bivariate copulas with real-valued parameter
θ , the following description of the multiplier method is restricted to that case. In order to construct
multiplier replicates of the statistic Rn, estimates Ċ1n and Ċ2n of the partial derivatives Ċ1 and Ċ2
are needed. Following [14, 25], let `n ∈ (0,1/2) be a bandwidth parameter such that

lim
n→∞

`n = 0, inf{
√

n`n > 0 : n ∈ N}> 0.
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68 Chr. Genest et al.

In practice, `n = 1/
√

n seems an effective choice. For arbitrary u1,u2 ∈ [0,1], set

Ċ1n(u1,u2) =
Ĉn(u1 + `n,u2)−Ĉn(u1− `n,u2)

2`n
,

Ċ2n(u1,u2) =
Ĉn(u1,u2 + `n)−Ĉn(u1,u2− `n)

2`n
.

Proceeding as in [19], let M be a large integer and, for each h ∈ {1, . . . ,M}, let Z(h) =

(Z(h)
1 , . . . ,Z(h)

n ) be a vector of mutually independent random variables with mean 0 and vari-
ance 1. These variables, which must also be completely independent from the data, are taken as
N (0,1) in what follows. Further write Z̄(h) = (Z(h)

1 + · · ·+Z(h)
n )/n and, for all u1,u2 ∈ [0,1], set

C(h)
n (u1,u2) =

1√
n

n

∑
i=1

(Z(h)
i − Z̄(h))1(Ûi1 ≤ u1,Ûi2 ≤ u2)

and Ĉ(h)
n (u1,u2) = C(h)

n (u1,u2)−Ċ1n(u1,u2)C
(h)
n (u1,1)−Ċ2n(u1,u2)C

(h)
n (1,u2). These are boot-

strap replicates of the empirical copula process Ĉn.
Next, the choice of estimator for θ must be taken into account. While the maximum pseudo-

likelihood estimation technique would be the method of choice and there is ample empirical
evidence that the multiplier method is valid in this case [19], a formal proof is still lacking. For
this reason, the following presentation focuses on moment-based methods.

In many bivariate copula families, the dependence parameter θ is typically in one-to-one
correspondence with Kendall’s tau, defined by

τ(θ) =−1+4
∫ 1

0

∫ 1

0
Cθ (u1,u2)dCθ (u1,u2).

An estimate θn of θ is then given by θn = τ−1(τn), where τn is the empirical version of Kendall’s
tau. This estimator is generally consistent [12]. Furthermore, it can be expressed in the form

√
n(θn−θ) =

1√
n

n

∑
i=1

Jθ{F1Xi1,F2(Xi2)} (1)

for an appropriate choice of score function Jθ . Assuming that τ ′(θ) = ∂τ(θ)/∂θ exists every-
where on O , one can actually check [2] that, for all u1,u2 ∈ [0,1], by

Jθ (u1,u2) =
4

τ ′(θ)

{
2Cθ (u1,u2)−u1−u2 +

1− τ(θ)

2

}
.

Accordingly, if one sets

Θ
(h) =

1√
n

n

∑
i=1

Z(h)
i Jθn(Ûi1,Ûi2),

a multiplier replicate R(h)
n of Rn is given, for each h ∈ {1, . . . ,M}, by

R(h)
n =

∫
[0,1]2

[
Ĉ(h)

n (u1,u2)−Θ(h)∇Cθn(u1,u2)

[Cθn(u1,u2){1−Cθn(u1,u2)}+ζm]m

]2

dĈn(u1,u2),
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A regularized goodness-of-fit test 69

where ∇Cθ simply stands for ∂C/∂θ given that θ ∈R, which is assumed to exist. An approximate
p-value for the test that H0 : C ∈ C0 based on the statistic Rn is then given by

p =
1
M

M

∑
h=1

1(R(h)
n ≥ rn).

The following result ensures the reliability of this resampling approach. Its proof, given in the
Appendix, relies on Theorem 3 of [19], which imposes various regularity conditions on Jθ .
Estimators of the form (1) that meet these conditions are said to belong to the class R2.

Proposition 3. Suppose that conditions A1−A3 hold and that an estimator θn of θ belongs
to the class R2 of rank-based estimators as defined by Kojadinovic et al. [19]. Then, as n→
∞, (Rn,R

(1)
n , . . . ,R(M)

n ) (R,R(1), . . . ,R(M)), where  denotes weak convergence, R is as in
Proposition 1, and R,R(1), . . . ,R(M) are mutually independent and identically distributed.

A similar result holds mutatis mutandis for estimators of θ that belong to the class R1 of
rank-based estimators considered in [19]. These are estimators that are expressible in the form

√
n(θn−θ) =

1√
n

n

∑
i=1

Jθ (Ûi1,Ûi2)+op(1)

in terms of a score function Jθ satisfying more stringent regularity conditions. Its proof is very
similar to that of Proposition 3 but relies on Theorem 2 of [19] instead. The estimator θn = ρ−1(ρn)
of θ obtained by inversion of Spearman’s rho is of the latter type; the corresponding score function
is defined, for all u1,u2 ∈ [0,1], by Jθ (u1,u2) = {12u1u2−3−ρ(θ)}/ρ ′(θ).

4. Power study

In order to assess the finite-sample performance of Rn as a goodness-of-fit test statistic, a power
study was conducted. To facilitate comparisons, simulations were carried out according to the
same experimental design as in [13, 19]. Each of the following six copula families served both
as the true and hypothesized dependence model: the Clayton, Frank, Gumbel, Normal, Plackett,
and Student t4 copula with four degrees of freedom. Three levels of dependence were considered,
corresponding to population values of .25, .5 and .75 for Kendall’s tau. Simulations were carried
out for various sample sizes and estimation techniques, as well as for a broad selection of values
for m and ζm. Source codes based on the R package copula [17] are available upon request.

For the sake of brevity, the results presented below are limited to three sample sizes and two
configurations of tuning parameters, viz., n ∈ {150,300,500}, m ∈ {0, .5}, and ζm = .05. When
m = 0, the value of ζm is irrelevant, as Rn then reduces to the Cramér–von Mises statistic Sn. All
calculations are based on 1000 replicates; in each case, the null distribution was approximated from
M = 1000 multipliers using standard Normal variates Z(1), . . . ,Z(M). Furthermore, the bandwidth
`n = 1/

√
n was used to compute Ċ1n and Ċ2n. As already mentioned in Section 3, the copula

parameter θ was estimated throughout by inversion of Kendall’s tau. Conclusions for other
rank-based estimators were similar.

Tables 1–3 show the results for n = 150, 300 and 500, respectively. In these tables, the
underlined characters refer to the observed level of the tests. To facilitate comparisons between
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TABLE 1. Percentage of rejection of H0 at the 5% nominal level in 1000 goodness-of-fit tests based on statistics
Rn (m = .5,ζm = .05) and Sn (m = 0) for samples of size n = 150 when M = 1000 multipliers are used.

Rn Sn
τ = .25 Copula under H0

True copula C F G N t4 P C F G N t4 P
C 4.9 71.1 88.8 58.3 47.8 66.9 4.5 45.3 74.9 38.8 38.0 43.3
F 53.2 5.1 17.5 4.4 6.9 4.1 60.0 4.6 16.9 7.1 9.8 4.3
G 82.4 30.3 5.7 20.6 20.3 27.5 85.9 35.9 5.0 27.0 24.3 33.2
N 42.4 11.0 19.2 4.3 4.6 8.5 50.6 7.8 12.6 4.0 5.1 7.0
t4 45.4 31.6 30.9 12.4 5.7 23.6 53.6 17.2 16.0 8.9 4.9 13.0
P 47.9 6.3 19.6 5.2 5.0 5.2 55.3 5.6 16.5 6.0 7.9 5.0

τ = .5
True copula C F G N t4 P C F G N t4 P

C 3.8 98.9 99.9 94.0 90.3 96.9 3.6 92.3 99.7 85.2 84.6 87.9
F 96.0 5.2 30.8 11.3 19.8 3.6 95.1 3.7 36.7 17.5 25.1 4.7
G 100.0 74.0 5.2 45.2 39.6 58.6 100.0 69.1 4.7 43.6 38.3 53.9
N 93.8 40.7 29.9 4.0 3.6 17.2 93.3 23.1 19.2 3.9 4.2 10.3
t4 95.2 65.8 43.9 13.3 5.7 33.2 94.3 42.2 25.0 7.5 4.3 16.3
P 95.2 15.8 31.7 6.0 7.9 3.7 95.0 9.0 30.6 9.8 11.6 3.6

τ = .75
True copula C F G N t4 P C F G N t4 P

C 4.3 100.0 100.0 96.4 95.4 97.9 3.4 96.8 100.0 92.6 91.4 90.0
F 99.4 3.6 34.3 27.3 37.8 5.6 98.7 2.5 44.8 36.6 45.1 8.5
G 100.0 97.0 4.4 51.6 43.7 69.4 100.0 84.5 3.6 38.5 35.6 48.5
N 99.7 83.7 20.1 3.2 2.1 18.0 99.4 45.4 11.0 2.3 2.5 5.4
t4 99.9 94.3 31.5 8.8 3.7 32.3 99.3 62.4 16.2 4.1 2.3 12.3
P 99.7 51.0 24.1 8.3 6.7 4.6 99.5 24.4 24.4 11.9 11.9 3.5
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A regularized goodness-of-fit test 71

TABLE 2. Percentage of rejection of H0 at the 5% nominal level in 1000 goodness-of-fit tests based on statistics
Rn (m = .5,ζm = .05) and Sn (m = 0) for samples of size n = 300 when M = 1000 multipliers are used.

Rn Sn
τ = .25 Copula under H0

True copula C F G N t4 P C F G N t4 P
C 4.8 93.2 99.4 84.4 77.0 90.5 5.2 77.8 97.8 69.3 71.9 76.0
F 85.0 4.9 35.5 7.6 23.0 4.6 83.8 4.1 36.8 10.4 23.9 4.3
G 98.5 46.7 4.6 32.8 36.8 41.9 98.8 53.0 4.2 39.6 36.1 48.0
N 76.7 15.0 29.7 5.0 7.7 12.2 78.3 11.8 24.0 4.5 8.3 9.8
t4 74.2 47.3 47.8 18.6 4.6 35.4 79.2 30.6 26.7 11.8 4.4 20.7
P 82.5 5.7 33.2 7.0 13.9 4.9 83.0 6.1 32.1 9.5 15.6 5.2

τ = .5
True copula C F G N t4 P C F G N t4 P

C 5.6 100.0 100.0 99.9 99.9 100.0 6.0 100.0 100.0 99.7 99.7 100.0
F 100.0 3.8 76.4 33.2 61.7 6.3 100.0 3.1 80.8 38.9 59.6 7.8
G 100.0 94.5 4.5 69.4 66.8 84.0 100.0 92.3 4.1 66.3 61.7 78.7
N 100.0 63.0 54.5 3.9 4.3 26.4 100.0 46.0 42.6 3.7 4.7 18.9
t4 99.9 90.3 69.0 15.6 4.4 52.3 99.9 75.3 47.9 9.3 3.4 31.1
P 100.0 21.3 62.3 15.8 23.1 5.3 100.0 15.0 61.7 21.0 26.3 5.7

τ = .75
True copula C F G N t4 P C F G N t4 P

C 2.7 100.0 100.0 100.0 100.0 100.0 2.3 100.0 100.0 100.0 100.0 100.0
F 100.0 3.7 91.1 79.8 91.6 23.7 100.0 2.7 91.5 79.9 89.2 26.0
G 100.0 100.0 3.4 74.8 70.1 92.3 100.0 99.4 3.1 63.4 59.3 78.9
N 100.0 99.2 48.0 3.1 2.4 34.8 100.0 84.7 31.9 2.7 2.7 16.6
t4 100.0 100.0 60.3 8.6 3.0 53.5 100.0 96.1 36.8 4.9 2.7 22.8
P 100.0 70.9 57.9 16.6 20.3 3.1 100.0 45.0 56.8 23.0 24.8 2.5
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TABLE 3. Percentage of rejection of H0 at the 5% nominal level in 1000 goodness-of-fit tests based on statistics
Rn (m = .5,ζm = .05) and Sn (m = 0) for samples of size n = 500 when M = 1000 multipliers are used.

Rn Sn
τ = .25 Copula under H0

True copula C F G N t4 P C F G N t4 P
C 4.1 99.6 100.0 97.7 95.5 99.2 3.4 96.0 100.0 92.3 94.3 95.1
F 97.0 4.2 59.7 12.0 46.0 4.1 95.8 4.4 63.5 14.4 41.9 4.2
G 100.0 71.5 4.9 55.3 64.6 66.4 100.0 77.3 4.4 58.2 57.8 72.1
N 93.5 20.9 47.3 4.8 16.0 15.4 92.7 15.7 41.4 4.6 15.0 12.0
t4 94.1 69.6 69.4 28.3 5.8 52.8 95.6 52.4 47.6 19.4 5.2 36.9
P 96.9 4.9 59.4 8.5 31.6 2.8 95.8 4.7 60.6 12.4 29.9 3.8

τ = .5
True copula C F G N t4 P C F G N t4 P

C 4.0 100.0 100.0 100.0 100.0 100.0 4.4 100.0 100.0 100.0 100.0 100.0
F 100.0 4.0 97.5 65.0 91.6 11.4 100.0 4.0 98.4 64.6 88.3 11.8
G 100.0 99.7 4.8 88.8 88.6 97.3 100.0 99.2 4.1 86.6 83.9 96.2
N 100.0 83.5 79.7 4.1 8.0 43.1 100.0 69.4 69.6 4.0 8.0 31.7
t4 100.0 98.4 88.9 21.1 4.6 71.3 100.0 92.1 75.1 12.7 4.4 52.5
P 100.0 30.1 92.6 31.7 49.4 4.5 100.0 20.3 91.7 36.7 48.1 4.6

τ = .75
True copula C F G N t4 P C F G N t4 P

C 2.4 100.0 100.0 100.0 100.0 100.0 2.3 100.0 100.0 100.0 100.0 100.0
F 100.0 3.1 99.9 98.9 99.9 57.2 100.0 2.3 99.9 97.3 99.6 52.8
G 100.0 100.0 3.3 94.3 91.8 99.6 100.0 100.0 3.0 86.9 84.9 96.7
N 100.0 100.0 80.6 3.2 3.1 60.1 100.0 98.8 61.9 2.4 3.6 35.0
t4 100.0 100.0 87.2 9.1 3.0 77.5 100.0 99.9 67.7 5.7 2.6 42.7
P 100.0 91.0 91.5 40.7 50.7 3.6 100.0 70.1 90.2 49.9 51.3 2.6
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the power Π(Rn) of the test based on Rn and the power Π(Sn) of the test based on Sn, their
difference was tested at the 1% level. Differences that are significant at that level are typeset in
boldface if Rn is superior to Sn, and in italics in the reverse case.

The following observations can be made:

(a) Both tests maintain their level fairly closely when τ = .25 or .5, but less so when τ = .75. In
all cases, the observed level tends to be closer to its nominal value with increasing sample
size. This is consistent with the observations reported in [19] for the case of Sn.

(b) Π(Rn) is generally superior to Π(Sn). The observed counts of (bold, italics, black) cells
are (37, 19, 52), (29, 7, 72) and (30, 4, 74) in Tables 1, 2, and 3, respectively. Generally
speaking, the superiority of Rn over Sn becomes more apparent as τ and n increase.

(c) As reported elsewhere [1, 13, 19], the Archimedean copulas (Clayton, Frank, and Gumbel)
are more easily distinguished than the other three. Both Rn and Sn achieve their lowest
power when trying to tell apart the two meta-elliptical copulas (Normal and t4).

The tables also reflect the asymmetric roles of Ĉn and Cθn in the definitions of Rn and Sn; e.g.,
when n = 150 and τ = .5, Rn rejects the Frank copula in 74% of cases when the data are Gumbel,
while the latter is rejected in only 30.8% of cases when the data are Frank. The corresponding
figures for Sn are 69.1 and 36.7, respectively.

5. Concluding remarks

The purpose of this paper was to propose a new, rank-based goodness-of-fit test procedure
for copulas. The test is based on an Anderson–Darling-type statistic Rn which emphasizes the
observed differences between the empirical copula Ĉn and a parametric copula Cθn of the true
copula C derived from a consistent, rank-based estimator θn of the dependence parameter θ under
the hypothesis H0 : C ∈ C0 = {Cθ : θ ∈ O}, where O is some open set.

In view of the simulations, the test based on the regularized statistic Rn is a strong competitor
to the Cramér–von Mises test statistic Sn. The dependence of Rn on the tuning parameters m
and ζm > 0 is open to debate, however. The choice m = .5 used here is natural, given that the
numerator and denominator in the integrand are then on the same scale, but other options might
improve the power of the test against specific alternatives. It is more difficult to defend the choice
ζm = .05 made here by trial and error. While the power of the test appears relatively unaffected
by this tuning parameter, one could conceivably dispose of it with some extra theoretical work.
Variants of the Anderson–Darling statistic considered here could also be envisaged. For instance,
one might replace Cθn by Ĉn in the definition of Rn. While this change would not alter the limiting
null distribution of the statistic, it could affect the power of the test in small samples.

Finally, the present developments suppose that the data used for model fitting and validation
form a random sample. This is typically not the case in econometric or financial applications,
where copulas are used to model the dependence between residuals from multivariate time series;
see [24] for a review. With some additional effort, recent work on the asymptotic behaviour of the
empirical copula process under serial dependence could be used to extend results in this direction;
see, e.g., [4] and references therein.
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Appendix: Proofs

The proof of Proposition 1 relies on the following result, which may be of independent interest;
a related result is Proposition 7.27 in [20], although a multivariate extension thereof would be
needed here. In what follows,

p→ refers to convergence in probability.

Proposition 4. Let C be a d-variate copula and Ĉn be the corresponding empirical copula based
on a random sample of size n. If a sequence Gn of processes is tight with respect to the uniform
norm on the space C [0,1]d of continuous functions on [0,1]d , then, as n→ ∞,

∆n =
∫
[0,1]d

GndCn−
∫
[0,1]d

GndC
p−→ 0.

Proof. By hypothesis, for any m ∈ N, there exists a compact subset Km of C [0,1]d such that
Pr(Gn 6∈ Km) < 1/m for all n ∈ N. Therefore, the proof is complete if one can show that for
arbitrary ε > 0, Pr{Gn ∈ Km, |∆n|> ε}→ 0 as n→ ∞.

Given that Km is compact, it is totally bounded, so for any given δ > 0, one can find a finite
covering of Km by balls B1, . . . ,BL of radius δ > 0, where for ` ∈ {1, . . . ,L}, B` is centred at
g` ∈ C [0,1]d . As Km is a normal space, it also follows from Theorem 5.1 in Chapter 4 of [22] that
there exist continuous positive mappings φ1, . . . ,φL such that for each ` ∈ {1, . . . ,L}, the support
of φ` is contained in B` and, for every g ∈ Km, φ1(g)+ · · ·+φL(g) = 1.

Thus, on the event {Gn ∈ Km},

∆n =
L

∑
`=1

φ`(Gn)
∫
[0,1]d

GndĈn−
L

∑
`=1

φ`(Gn)
∫
[0,1]d

GndC

=
L

∑
`=1

φ`(Gn)
∫
[0,1]d

(Gn−g`)dĈn−
L

∑
`=1

φ`(Gn)
∫
[0,1]d

(Gn−g`)dC

+
L

∑
`=1

φ`(Gn)

(∫
[0,1]d

g` dĈn−
∫
[0,1]d

g` dC
)
.

It follows that on the event {Gn ∈ Km}, one has

|∆n| ≤ 2δ + max
`∈{1,...,L}

∣∣∣∣∫
[0,1]d

g` dĈn−
∫
[0,1]d

g` dC
∣∣∣∣ .
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Choosing δ = ε/4, one then gets

Pr{Gn ∈ Km, |∆n|> ε} ≤ Pr
{

max
`∈{1,...,L}

∣∣∣∣∫
[0,1]d

g` dĈn−
∫
[0,1]d

g` dC
∣∣∣∣> ε/2

}
.

To see that the latter term tends to zero asymptotically, it suffices to note that, as n→ ∞,∫
[0,1]d

g` dĈn =
1
n

n

∑
i=1

g`
(
Ûi1, . . . ,Ûid

) p−→
∫
[0,1]d

g` dC.

In fact, given that g` is continuous and bounded, the convergence occurs almost surely. In
dimension d = 2, this follows, e.g., from part (i) of Proposition A·1 in [10]; when the function is
bounded, however, the same proof therein carries over to arbitrary dimension d ≥ 2.

Proof of Proposition 1: First observe that conditions A1−A3 imply that, as n→ ∞, Cθn

p→Cθ .
Indeed, for fixed ε,δ > 0, one has

Pr(‖Cθn−Cθ‖> ε)≤ Pr(‖θn−θ‖ ≥ δ )+Pr(‖Cθn−Cθ‖> ε,‖θn−θ‖< δ )

and, as n→ ∞, the first summand goes to 0 because the estimator θn is consistent. Furthermore,

Pr(‖Cθn−Cθ‖> ε,‖θn−θ‖< δ )≤ Pr

(
sup

‖θ ∗−θ‖<δ

‖Cθ ∗−Cθ‖> ε

)

and the right-hand term vanishes asymptotically by condition A3.
Now define Dθ = {Cθ (1−Cθ ) + ζm}2m. Given that |s(1− s)− t(1− t)| ≤ 3|s− t| for all

s, t ∈ [0,1], it follows from the Continuous Mapping Theorem that, as n→ ∞,

‖Dθn−Dθ‖
p−→ 0. (A1)

Next consider the mapping ψθ : C [0,1]d→C [0,1]d : g 7→ψθ (g) = g2/Dθ . Given that ‖Dθ‖ ≥
ζ 2m

m , it follows that for all g,h ∈ C [0,1]d , ‖ψθ (g)−ψθ (h)‖ ≤ ‖g2− h2‖/ζ 2m
m , whence ψθ is

continuous. Lemma 2 and the Continuous Mapping Theorem then jointly imply that, as n→ ∞,

ψθ{
√

n(Ĉn−Cθn)}=
n(Ĉn−Cθn)

2

Dθ

 
(Cθ −Θ>∇Cθ )

2

Dθ

= ψθ (Cθ −Θ
>

∇Cθ ) (A2)

in `∞[0,1]d . Furthermore, note that∥∥∥∥n(Ĉn−Cθn)
2

Dθ

− n(Ĉn−Cθn)
2

Dθn

∥∥∥∥≤ ‖n(Ĉn−Cθn)
2‖× ‖Dθn−Dθ‖

ζ 4m
m

.

It thus follows from (A1) and the tightness of the process
√

n(Ĉn−Cθn) that, as n→ ∞,∥∥∥∥n(Ĉn−Cθn)
2

Dθ

− n(Ĉn−Cθn)
2

Dθn

∥∥∥∥ p−→ 0.
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Combining this fact with (A2), one then has, as n→ ∞,

n(Ĉn−Cθn)
2

Dθn

 
(Cθ −Θ>∇Cθ )

2

Dθ

.

The conclusion now follows from Proposition 4 and the Continuous Mapping Theorem.

Proof of Proposition 2: First decompose the goodness-of-fit process in the form
√

n(Ĉn−Cθn) =
√

n(Ĉn−C)−
√

n(Cθn−Cθ ∗)+
√

n(C−Cθ ∗).

A simple adaptation of the proof of Lemma 2 then implies that, as n→∞,
√

n(Ĉn−C)−
√

n(Cθn−
Cθ ∗) converges weakly to the tight centred Gaussian process C−Θ∗∇Cθ ∗ on `∞[0,1]d . When H0
fails, C 6=Cθ ∗ and, as n→ ∞,

√
n‖C−Cθ ∗‖→ ∞. One may then conclude.

Proof of Proposition 3: Consider again the mapping ψθ : C [0,1]d → C [0,1]d : g 7→ ψθ (g) =
g2/Dθ . It follows from the Continuous Mapping Theorem and Theorem 3 in [19] that, as n→ ∞,

(ψθ{
√

n(Ĉn−Cθn)},ψθ (Ĉ
(1)
n −Θ

(1)
∇Cθn), . . . ,ψθ (Ĉ

(M)
n −Θ

(M)
∇Cθn))

converges weakly in (`∞[0,1]d)M+1 to

(ψθ (Cθ −Θ∇Cθ ),ψθ (C
(1)
θ
−Θ

(1)
∇Cθ ), . . . ,ψθ (C

(M)
θ
−Θ

(M)
∇Cθ )),

where (C(1)
θ
,Θ(1)), . . . ,(C(M)

θ
,Θ(M)) are independent copies of (Cθ ,Θ). Using (A1) and Proposi-

tion 4, one can proceed exactly as in the proof of Proposition 1 to complete the argument.

References

[1] D. Berg. Copula goodness-of-fit testing: An overview and power comparison. Europ. J. Finance, 5:675–701,
2009.

[2] D. Berg and J.-F. Quessy. Local power analyses of goodness-of-fit tests for copulas. Scand. J. Statist., 36:389–412,
2009.

[3] A. Bücher and H. Dette. A note on bootstrap approximations for the empirical copula process. Statist. Probab.
Lett., 80:1925–1932, 2010.

[4] A. Bücher and S. Volgushev. Empirical and Sequential Empirical Copula Processes Under Serial Dependence.
Unpublished manuscript, arXiv:1111.2778.

[5] M.A. Diouf, Statistical Analysis of Poverty and Inequalities. Doctoral dissertation, Université de Montréal,
Canada, 2008.
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