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1. Formulas for partitioned regression

y = Xβ + ε

= (X1, X2)

(

β 1

β 2

)

+ ε

= X1β 1 +X2β 2 + ε (1.1)

β̂ = (X ′X)−1X ′y =
(

β̂ 1

β̂ 2

)

(1.2)

where

X : T × k , X1 : T × k1 , X2 : T × k2 ,

β 1 : k1×1 , β 2 : k2×1 , k = k1 + k2 .

β̂ 1 = (X ′
1X1)

−1X ′
1y− (X ′

1X1)
−1X ′

1X2D−1X ′
2M1y

= b1− (X ′
1X1)

−1X ′
1X2D−1X ′

2M1y (1.3)

where

b1 = (X ′
1X1)

−1X ′
1y , (1.4)

M1 = IT −X1(X
′
1X1)

−1X ′
1 , (1.5)

D = X ′
2M1X2 ; (1.6)

β̂ 2 = D−1X ′
2M1y = (X ′

2M1X2)
−1X ′

2M1y ; (1.7)

β̂ 1 = (X ′
1M2X1)

−1X ′
1M2y (1.8)

where
M2 = IT −X2(X

′
2X2)

−1X ′
2 . (1.9)

For further discussion, the reader may con consult Schmidt (1976) andSeber (1977).

2. Updating formulas for linear regressions

yt = x′tβ + ε t , t = 1, ...,T (2.1)

where
xt : k×1, (2.2)
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Yr =











y1

y2
...
yr











, Xr =











x
′

1
x
′

2
...
x
′

r











, r = k,k +1, ...,T . (2.3)

br = (X ′
rXr)

−1X ′
rYr (2.4)

is the estimator ofβ based on the firstr observations. Then the following updating formulas hold
[see Brown, Durbin and Evans (1975)] :

br = br−1 +
(

X ′
rXr
)−1

xr
(

yr − x′rbr−1
)

, k +1≤ r ≤ T , (2.5)

(X ′
rXr)

−1 = (X ′
r−1Xr−1)

−1
−

(

X ′
r−1Xr−1

)−1
xrx′r

(

X ′
r−1Xr−1

)−1

1+ x′r
(

X ′
r−1Xr−1

)−1
xr

. (2.6)

Further,

V (br)−V (br−1) = σ2(X ′
rXr)

−1
−σ2(X ′

r−1Xr−1)
−1

= −σ2

(

X ′
r−1Xr−1

)−1
xrx′r

(

X ′
r−1Xr−1

)−1

1+ x′r
(

X ′
r−1Xr−1

)−1
xr

(2.7)

is a negative semidefinite matrix.

3. Orthogonal decompositions of least squares estimators

Considerβ̂ and β̂ 0, respectively the unrestricted estimator ofβ and the restricted estimator ofβ
under the constraintRβ = r :

β̂ =
(

X ′X
)−1

X ′y , (3.1)

β̂ 0 = β̂ +QR
[

r−Rβ̂
]

(3.2)

where
QR =

(

X ′X
)−1

R′
[

R
(

X ′X
)−1

R′
]−1

. (3.3)

Then, we see easily that

Rβ̂ − r = R
[

β +
(

X ′X
)−1

X ′ε
]

− r (3.4)

= (Rβ − r)+RX ε (3.5)

where
RX = R

(

X ′X
)−1

X ′
, (3.6)

β̂ − β̂ 0 = QR
[

Rβ̂ − r
]
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= QR
[

(Rβ − r)+RX ε
]

= QR (Rβ − r)+QRRX ε
= QR (Rβ − r)+Qε (3.7)

and

β̂ 0 = β̂ +(β̂ 0− β̂ )

= β +
(

X ′X
)−1

X ′ε −QR (Rβ − r)−Qε

= β +QR (r−Rβ )+ [
(

X ′X
)−1

X ′
−Q]ε (3.8)

where
Q = QRRX = QRR

(

X ′X
)−1

X ′
. (3.9)

Since
RX X

(

X ′X
)−1

= R
(

X ′X
)−1

X ′X
(

X ′X
)−1

= R
(

X ′X
)−1

, (3.10)

RX R′
X = R

(

X ′X
)−1

X ′X
(

X ′X
)−1

R′ = R
(

X ′X
)−1

R′ (3.11)

and

RX Q′ = RX R′
X Q′

R

= R
(

X ′X
)−1

R′
[

R
(

X ′X
)−1

R′
]−1

R
(

X ′X
)−1

(3.12)

= R
(

X ′X
)−1

, (3.13)

it follows that

C(Rβ̂ − r, β̂ 0) = C
(

RX ε, [
(

X ′X
)−1

X ′
−Q]ε

)

= E
[

RX εε ′[
(

X ′X
)−1

X ′
−Q]′

]

= σ2RX [
(

X ′X
)−1

X ′
−Q]′

= σ2RX [X
(

X ′X
)−1

−Q′]

= σ2[R
(

X ′X
)−1

−R
(

X ′X
)−1

] = 0. (3.14)

and

C
(

β̂ − β̂ 0, β̂ 0

)

= C
(

QR
[

Rβ̂ − r
]

, β̂ 0

)

= QRC
(

Rβ̂ − r, β̂ 0

)

= 0.

Thus β̂ 0 and Rβ̂ − r are uncorrelated under the assumptions of the classical linear model, and
similarly for β̂ 0 andβ̂ − β̂ 0. This holds even if the normality assumption or the restrictionRβ = r

3



do not hold. Consequently, the identity

β̂ = β̂ 0 +
(

β̂ − β̂ 0

)

(3.15)

provides a decomposition ofβ̂ as the sum of two uncorrelated random vectors, so that

V
(

β̂
)

= V
(

β̂ 0

)

+V
(

β̂ − β̂ 0

)

. (3.16)

More explicitly, we have
β̂ = β̂ 0 +QR(r−Rβ )−Qε (3.17)

where
C
[

β̂ 0, Qy
]

= C
[

β̂ 0, Qε
]

= 0. (3.18)

An interesting special case of the latter results is the one where

y = X1β 1 +X2β 2 + ε (3.19)

and the restrictions take the form
β 2 = 0, (3.20)

with
R = [0, Ik2] , r = 0. (3.21)

Then

β̂ =

(

β̂ 1

β̂ 2

)

, β̂ 0 =

(

β̂ 10

β̂ 20

)

=

(

(X ′
1X1)

−1X ′
1y

0

)

(3.22)

and
β̂ 1 = β̂ 10−Q20Rβ̂ = β̂ 10−Q20β̂ 2 (3.23)

where
β̂ 2 = (X ′

2M1X2)
−1X ′

2M1y (3.24)

andβ̂ 2 is independent of̂β 10.
1

1See Magnus and Durbin (1999) and Danilov and Magnus (2001) for further discussion.
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